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Synopsis Maximal whole-organism performance traits measured in the laboratory and the levels of performance ex-

pressed in the field often exhibit a mismatch, complicating our understanding of the selection pressures influencing the

evolution of performance traits. To better understand the evolution of locomotor performance, we built an individual-

based simulation to test hypotheses about selection on locomotor performance. Starting with a population of individuals

with two correlated but variable performance traits, we simulated these individuals surviving and reproducing in a

complex environment, presenting each individual with successive ecological challenges requiring specific performance

capabilities over their lifespan. While most challenges require sub-maximal speeds, intermittent bouts requiring increased

performance, such as escape from predators, introduce strong, but infrequent, selection for maximal performance. By

comparing the results of simulations run with individuals that only perform at their maximum levels versus those that

adjust this effort, we show that intra-individual variation in speed confers a selective advantage, regardless of the extent of

that variation. We also show that the direction and strength of the correlation between the two performance traits affects

the evolutionary trajectory of phenotypic change. Ultimately, this model allows us to simulate the evolution of movement

speeds over a range of selective contexts, offering insight into the factors affecting the evolutionary relationship between

optimal and maximal performance.

Introduction

Whole-organism performance capacities (defined as

quantitative measures of the ability of an individual

to perform dynamic, ecologically relevant tasks such

as jumping, running, or biting) (Bennett and Huey

1990; Irschick and Garland 2001; Lailvaux and

Irschick 2006) provide a direct and intuitive link

between the individual and fitness across several dif-

ferent selective contexts (Husak and Fox 2008;

Irschick et al. 2008). In turn, locomotor performance

represents the outcome of a variety of interacting

selection pressures, all of which have operated over

evolutionary time to shape the diversity of perfor-

mance traits that we see today (Lailvaux and

Husak 2014). However, the selective benefits main-

taining a trait can differ from those driving its origin

(Chandler et al. 2013). Understanding the evolution

of locomotor performance therefore requires not

only quantifying contemporary selection pressures

in nature, but also testing hypotheses regarding

how selection may have acted on performance in

the past.

Measuring selection on performance in nature

presents a number of challenges. These range from

incomplete or inaccurate characterization of the

long-term, dynamic selective environment

(Kingsolver and Pfennig 2007; Irschick et al. 2007;

Bell 2010) to limitations in our understanding of the

relationships both among performance traits

(Vanhooydonck et al. 2001; Van Damme et al.

2002; Wilson et al. 2014) and between performance

and other key traits that are important to fitness

(Ghalambor et al. 2003; Lailvaux and Husak 2014).

An additional challenge is comprehending the rela-

tionships between the maximal performance capaci-

ties commonly measured in the laboratory and the

Integrative and Comparative Biology
Integrative and Comparative Biology, volume 55, number 6, pp. 1176–1187

doi:10.1093/icb/icv082 Society for Integrative and Comparative Biology

Advanced Access publication June 30, 2015

� The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved.

For permissions please email: journals.permissions@oup.com.

 at SIC
B

 Society A
ccess on N

ovem
ber 30, 2015

http://icb.oxfordjournals.org/
D

ow
nloaded from

 

http://icb.oxfordjournals.org/


extent to which animals use those capacities in the

field (Irschick 2003). It is well understood that ani-

mals do not necessarily always perform at maximal

capacity in nature, creating a mismatch between field

and laboratory measures (Irschick et al. 2005). For

example, Crotaphytus collaris lizards do not rely con-

sistently on their maximal sprint capacities in nature,

and will alter their sprint speed depending on

whether they are foraging, escaping from a predator,

or defending a territory (Husak and Fox 2006).

Consequently, measures of selection on maximal per-

formance capacity may be misleading if organisms

perform at their maximum only rarely or infre-

quently (Irschick 2003). Alternatively, it may be

that high maximal capacities are meaningful in

nature, and are maintained due to their extreme im-

portance in relatively rare situations, with dispropor-

tionate effects on survival or fitness.

Predicting the evolution of preferred movement

speed depends not only on our understanding of

the integrated selective context, but also of the fac-

tors enabling the response to selection within that

context. Prime among these factors are (1) the addi-

tive genetic variance of the trait in question, and (2)

the covariation between that trait and other traits

that might be under either concordant or conflicting

selective pressures (Lande and Arnold 1983; Blows

2007). Performance exists within an integrated, mul-

tivariate phenotype (Ghalambor et al. 2003), and as

such the evolution of single performance traits

cannot be considered in isolation from the rest of

that phenotype (Ghalambor et al. 2004; Lailvaux

and Husak 2014). Any estimate of preferred perfor-

mance evolution should therefore consider the rela-

tionships among the performance trait of interest

and other, related traits in addition to accounting

for the behavioral modulation of the performance

trait itself (Garland and Losos 1994). Conducting

this type of integrated and comprehensive evolution-

ary study is by no means trivial, and empirical at-

tempts to characterize selection on preferred

performance have thus far met with limited success.

In particular, our current poor understanding of the

additive genetic (co)variances underlying both per-

formance and correlated traits that are also key tar-

gets of selection (Lailvaux and Husak 2014)

precludes this predicted evolutionary approach in

all but a few species (e.g., Le Galliard et al. 2004;

Lailvaux et al. 2010).

Individual-based simulations have proven to be

useful in situations in which conducting complex,

large-scale selection studies is difficult or unfeasible

(e.g., Jones et al. 2003, 2004; Melo and Marroig

2015). These simulations therefore constitute a

promising alternative approach to investigating the

evolution of preferred performance. Here, we present

such an approach to modeling selection on two cor-

related whole-organism performance traits. We apply

our approach to an idealized population of lizards

occupying a small portion of a reasonably large hab-

itat. By starting with this ‘‘virgin population’’ and

changing the selective context via the introduction

of predators that put pressure on low-sprint speed

phenotypes, we consider the effects of the heritability

and distribution of traits, and of inter- and intra-

individual variability in performance on the evolu-

tionary trajectories of each trait. We therefore aim to

understand not only those factors currently main-

taining preferred performance, but also to simulate

the basic selective conditions that might have led to

contemporary performance capacities. Specifically,

we test the following hypotheses: (1) Varying be-

tween non-maximal (i.e., preferred) and maximal

performance uses acts to buffer the effect of selection

on performance; (2) maximal and optimal trait

values depend on both the selective environment,

and the nature of the genetic correlation underlying

the two performance traits.

Materials and methods

The model

We used NetLogo (Wilensky 1999), a Java-based,

programmable modeling environment tailored to

agent-based simulations to build and execute our

model. NetLogo is a simple and customizable inter-

face for running and interacting with simulations.

With this platform, we built a quantitative genetic

simulation model (Supplementary File S1) of perfor-

mance evolution consisting of a population of lizards

living, eating, reproducing, and dying in an environ-

ment according to simple, explicit rules (Fig. 1).

Individuals in our model have two performance

traits, sprint and endurance, which are subject to

selection based on user-defined ‘‘rules’’. The expres-

sion of each trait is linked to the individual’s avail-

able energy budget via trait-specific cost-of-transport

functions. The utility of each trait in our model is

context-specific: sprint speed is used by individuals

to mediate successful or unsuccessful encounters

with predators, while endurance capacity dictates

the size of the area an individual can search for

food, and, consequently, the probability that an in-

dividual will acquire energy. We define the energetic

costs of performance as a function of the expressed

performance. Survival and reproduction depend on

both performance capacity and energy efficiency,
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depending on the environmental parameter values.

An overview of the simulation is presented in Fig. 1.

The environment is a grid of cells that can contain

either a predator or a resource, or both, or none.

Predators exist in the same location for the entire

simulation, and have a sprint speed assigned at the

start of the simulation (i.e., in the P1 generation),

drawn at random from a normal distribution with a

mean of one standard deviation below the mean

sprint speed for the population (Table 1). Food is

redistributed before the beginning of every step of

the simulation. Resources are depleted during each

Fig. 1 Simulation processes and scheduling.

Notes: 1. At death, agents record age, number of offspring, and cause of death (predator, depletion of energy, or old age). 2. Decision

determined by probability of choosing maximum capacity (Table 1). 3. Mating occurs only every 40 steps. If the agent is female and has

energy greater than an assigned threshold, she is randomly paired with a male that also has sufficient energy. The female’s surplus

energy determines the clutch size, and both male and female incur energy costs proportional to the clutch size (Table 1). Mates’

identities are recorded as well as that of each parent–child pair, allowing for the analysis of pedigrees and determination of the number

of offspring that survive to reproduce. 4. Occurs only every 50 steps. 5. At the end of a simulation, any remaining lizards update their

records and record their cause of death as ‘‘alive,’’ and all output is written to file.
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step of the simulation as agents consume them. The

probability that a resource will be depleted after

being consumed by a single agent is hardcoded as

0.5, thus introducing density effects on the agents’

abilities to acquire resources. The more lizards that

are foraging, the greater the chances are that a

resource becomes locally depleted. There are no con-

straints on movement within the environment except

for the distance an agent can travel given its endur-

ance capacity.

Trait assignment and inheritance

During the initial setup, a starting population of 500

individuals is created and assigned maximal sprint

capacities drawn at random from a normal distribu-

tion with mean and standard deviation set by global

Table 1 Parameters and settings for simulations investigating intra-individual variation in sprint speed.

Global parameter Value(s) Description

Preferred sprint 0, 60, 70,

80, 90, 100

Percent of maximal sprint capacity an individual can use in a simulation

Covariance

(sprint, endurance)

�1, 0, 1 Slope of the line determining endurance capacity from the inherited

sprint capacity

Preferred endurance 70 Percent of maximal endurance capacity an individual can use in a simulation

h2 0.7 Heritability of sprint speed, slope of the midparent–offspring regression

Trait means 100 Population means for maximal sprint and endurance capacities

Trait variances 3.5 Population variance for sprint and endurance capacities

Size of environment 101� 101 cells

Maximum lifespan 400 (steps)

Initial lizard population

density

4.91 Starting population for all simulations is composed of 500 individuals

Predator density �5

Mean predator

sprint speed

98.13 Mean predator speeds are set to the prey population mean minus

one standard deviation

Resource density �19

Resource quality 50 Units of energy added to an individual’s energy budget when a resource

is consumed

Cost of reproduction 2 Amount of energy deducted per offspring

Threshold for

‘‘surplus energy’’

80 Minimum amount of energy an individual can have in order to reproduce

during a reproductive event

Energy budget 100 Maximum energy an individual can have at one time

Initial energy 80 Amount of energy assigned to an individual at birth defined as a constant

or function of parental investment

Sex ratio 0.5 Determined by probability of being assigned female

Probability of using

preferred trait

0.5 Governs agent’s decision to use preferred versus maximal capacity

Search radius (SR)
SRmax ¼ 20

SRmin ¼ 1
Translates expressed endurance capacity into a �distance that defines the

radius of the cone-shaped foraging area.

For agent i:

SRi ¼
endurancei � endurancemin

endurancemax � endurancemin

SRmax � SRminð Þ þ SRmin

Cost of endurance a¼ 2, b¼ 0.5, c¼ 0 Cendurance¼ a(b * SR�c)

Cost of sprint Mean¼ 100 Csprint¼ P(X5sprintagent) * energy budget,

SD¼ 20 where X is a random variable drawn from a normal distribution with mean

and SD parameters

Notes: All combinations of preferred sprint speed and covariance (sprint, endurance) were run multiple times (Supplementary Information S2).

All parameters may also be defined by functions rather than constants. Heritability determines how closely offspring resemble their parents with

1 being a perfect correlation between parent and offspring trait values, and zero denoting that each offspring’s sprint capacity will always be

drawn from the same distribution as the initial population. Endurancemin and endurancemax are the population’s minimal and maximal endurance

capacities and are defined as three standard deviations below and above the mean value of the trait, respectively.

Simulating performance evolution 1179

 at SIC
B

 Society A
ccess on N

ovem
ber 30, 2015

http://icb.oxfordjournals.org/
D

ow
nloaded from

 

http://icb.oxfordjournals.org/lookup/suppl/doi:10.1093/icb/icv082/-/DC1
http://icb.oxfordjournals.org/


simulation parameters (Table 1). Maximal endurance

capacity is then determined by a regression line with

a slope equal to the covariance between sprint and

endurance (Table 1). For our two-trait model, we

use a parent–offspring regression approach to char-

acterize sprint speed transmission (inheritance)

(Lynch and Walsh 1998). We thus assigned sprint

speed a heritability (h2) equal to the slope of the

mid-parent regression line between the parental

and F1 generations as well as a separate parameter

governing the correlation between sprint and endur-

ance (Table 1) (Lynch and Walsh 1998). Thus, a

mating pair’s average sprint capacity determines the

expected mean value of that pair’s clutch, and each

individual offspring within the clutch is assigned a

value drawn at random from a specified normal dis-

tribution defined by this value and a standard devi-

ation equal to that for sprint speed. The offspring’s

endurance and sex are set using the same procedures

as in the initial setup. Thus, sprint speed and endur-

ance are genetically correlated in our model such

that heritable changes in sprint speed effect changes

in endurance determined by the value of the shared

genetic covariance.

Costs of performance

We calculated the costs of sprint speed using a cu-

mulative distribution function for a normal distribu-

tion, the shape of which corresponds to a nearly

linear relationship between energetic cost and speed

near the mean sprint capacity for the population, but

with decreasing slope as one moves toward extremely

low or high speeds, ultimately reaching a plateau

(Biewener 2003). The parameters describing the

shape of the distribution are scaled such that indi-

viduals employing sprint speeds near the population

mean incur intermediate costs. Low sprint perfor-

mers incur little to no energetic costs, but failing

to outsprint a predator means certain death. As we

did not wish for endurance to overly affect relative

fitness, we modeled costs of endurance as an expo-

nential function. We parameterized this curve so that

costs gently increase in a roughly linear fashion (as-

suming a constant metabolic rate) (Taylor et al.

1982) over the range of values of endurance for the

initial population. Thus, most individuals incur low

to intermediate costs. However, costs for endurance

capacities far beyond the range of the starting pop-

ulation become prohibitive, as endurance capacity is

limited by physiology and aerobic capacity (Bennett

1982; Biewener 2003), which are assumed to be un-

changing in our model. The functions and parameter

settings for sprint and endurance are presented in

Table 1.

Intra-individual variation in sprint speed: preferred

versus maximal

To determine the consequences of varying sprint

speed for the intensity and direction of selection

on maximal sprint speed, we ran replicate simula-

tions with all environmental variables and selection

pressure parameters held constant, with only the

nature of the correlation between sprint and endur-

ance (positive, negative, and no correlation) and the

magnitude of the difference between preferred and

maximal sprint speeds allowed to vary between

runs. Resource density was set such that the average

distances between cells containing resources were ap-

proximately less than or equal to the average search

radius of the population. Resource quality was set

sufficiently high such that individuals of intermediate

phenotypes would remain in positive energy balance

for an entire step of a simulation when considering

the costs of locomotion. Predator density was cali-

brated so that all individuals would have a high

probability of encountering a predator within their

lifetimes, resulting in detectable selection on sprint

speed. We determined these settings (Table 1) during

parameter sweeps during development and debug-

ging of the model, as well as by a parameter sweep

of the current model, summarized in Supplementary

File S2.

Preferred performance is measured as the percent

of maximal capacity that an individual can use, and

in all simulations individuals had a 0.5 probability of

using a submaximal or ‘‘preferred’’ trait value instead

of their maximum. We ran at least 15 simulations for

all combinations of correlation type (i.e., �, 0, or þ)

and each of the following preferred speeds: 0%, 60%,

70%, 80%, 90%, and 100% of maximal sprint capac-

ity. When preferred speed is equal to 100%, individ-

uals do not vary sprint speed and always use their

maximal capacity. Endurance, for all simulations,

was set to vary between maximal and 70% of max-

imum, again with a 0.5 probability of using either

preferred or maximum, allowing for variation in for-

aging distance and softening the constraints on the

system imposed by the costs of endurance. As re-

source densities were sufficiently high, lower foraging

distances do not greatly affect survival. Simulations

were allowed to run for 15 generations. Simulations

ended prematurely if the population became

extinct or exceeded 5000 individuals, as larger pop-

ulations would typically cause the simulation to

crash.
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While NetLogo comes with broad mathematical

functionality, we used the R-extension (Thiele and

Grimm 2010) for performing many of the calculations

during simulations and also to prepare and export the

simulation’s output. Data recorded during a simula-

tion is outlined in Fig. 1, and we used customized R (R

Core Team 2014) scripts to process this data and cal-

culate selection parameters (Supplementary File S1).

For each generation of a simulated population, we

were able to calculate the changes in the traits’ means

and variances over time, as well as the intensity of se-

lection on sprint speed, isprint, which is the change in

mean sprint speed after selection and before reproduc-

tion (i.e., the univariate selection differential) stan-

dardized by the trait’s variance (Lande and Arnold

1983). We also estimated the linear selection coeffi-

cient for sprint speed (�sprint) for each generation

within each simulation from the regression of relative

fitness on sprint speed. To describe nonlinear selection

affecting the variance of sprint-speed phenotypes, we

derived a metric similar to the intensity of selection by

calculating the difference in variance during each in-

terval between reproductive events. Finally, we have

also included a method for computing the multivariate

selection coefficients for the linear, nonlinear, and cor-

related selection coefficients for both traits, the details

of which are presented in Supplementary File S1.

We used generalized linear mixed models for con-

tinuous data with an identity link function (GLMM;

lme function, R package: nlme) (Pinheiro et al. 2015)

to model how the form and intensity of selection

change over time during a simulation, as well as how

these metrics are affected both by variation in sprint

speed and by the correlation between the two locomo-

tor traits. For each dependent variable (isprint, �sprint,

and the magnitude of the change in variance), we con-

structed models with random intercepts for individual

simulation runs, and fixed effects for (1) generation,

(2) the covariance between sprint and endurance

(slope of the regression determining an individual’s

endurance capacity given their sprint capacity), and

(3) preferred sprint speed. We first fit the saturated

model with all predictors and all interactions using

maximum likelihood and found the minimum ade-

quate model via log-likelihood ratio deletion tests

(stepAIC; R package: MASS) (Venables and Ripley

2002), and refit this model using REML.

Results

Varying individual sprint speed has clear effects on

the form and intensity of selection. In the scenarios

wherein individuals always use 100% of their maxi-

mum capacity, isprint, �sprint and the magnitude of

the decrease in variance due to selection are initially

very high relative to scenarios in which individuals

vary sprint speed (Figs. 2 and 3), and within two to

three generations, predator-imposed selection be-

comes negligible while the population expands expo-

nentially, rapidly exceeding 5000 individuals. When

individuals are allowed to employ lower-cost, pre-

ferred speeds, however, selection on sprint speed is

less intense and fluctuates asymptotically over time

(Fig. 2). The best-fit model explaining isprint for all

simulations in this experiment (Table 2, A) and for

the subset of all simulations, excluding populations

that never vary in sprint performance (Table 2, B),

included terms for generation (time), correlation

structure between sprint and endurance, preferred

speed, and interactions between generation and

covariation and generation and preferred speed

(Table 2). The coefficient for the preferred-speed

term and the interaction of generation and preferred

speed changes signs between the two datasets, indi-

cating that within the non-variable groups, the effect

of this interaction is reversed.

The slope of the linear relationship between max-

imal sprint speed and relative fitness, �sprint, behaved

similarly to isprint over the course of our simulations.

The best-fit GLMM for �sprint included terms for

generation (time), covariation between traits, pre-

ferred speed, and interactions between time and co-

variation, time and preferred speed, and covariation

and preferred speed (Table 3, A). When we excluded

simulations in which individuals used only their

maximum, the best model was the saturated model,

with all terms and interactions (Table 3, B). To com-

pare with the previous model (Table 3, A), we also

fit the model without the three-way interaction, and

there was a sign change for all terms involving pre-

ferred speed (Table 3, C).

Differences in selection on the variance of sprint

speed were also evident in our simulations (Fig. 3).

As with our previous selection metrics, the non-

varying populations experienced a more dramatic

effect than those that varied sprint speed. The co-

variance between sprint and endurance did not, how-

ever, significantly alter the trends observed between

the variable and non-variable groups, and this term

was not retained in the best-fit GLMM. Only time

and preferred speed had significant effects on the

changes in sprint variance over time (Table 4, A).

However, a GLMM performed with only the variable

sprint speed populations did retain terms for time

and covariance, although the coefficient estimated

for covariance was not large relative to its standard

error. Furthermore, differences in preferred speed

did not affect selection on the variance of sprint
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speed over time within this subset (Table 4, B). As

nonlinear selection acts on the variance of a trait,

this metric is descriptive of how populations experi-

ence nonlinear selection in our simulation model.

Varying sprint speed not only affects the relation-

ship between sprint capacity and relative fitness, but

also has indirect effects on endurance, especially

when sprint and endurance share positive genetic

covariation. We found evidence that significant, neg-

ative nonlinear selection on endurance characterized

249 out of 267 simulations (Supplementary File S3),

with the remaining simulations characterized by neg-

ative linear selection on endurance, reflecting the

high energetic costs of endurance. When individuals

operated solely at their maximum, selection on

sprint capacity was either positive linear (higher

sprint speeds had higher relative fitness) or negative

nonlinear in conjunction with a negative coefficient

for the interaction term between sprint and endur-

ance (selection for a negative correlation between

traits). However, when individuals vary sprint

speed, the form of selection was highly variable,

even when all other parameters were equal

(Supplementary File S3).

Discussion

Explaining the maintenance of higher maximal per-

formance capacities than are typically used in nature

is a persistent problem in evolutionary physiology.

We used an individual-based simulation approach

to model the evolution of two correlated perfor-

mance traits, sprint and endurance, under conditions

of varying and non-varying sprint performance. Our

results show that varying sprint capabilities in a

Fig. 2 Correlation between traits affects the trajectory of

phenotypic change in simulated populations. For each type of

correlation between sprint and endurance (negative—black;

none—dark gray; positive—light gray) and performance strategy

(individuals only use maximum sprint—dashed line; sprint speed

variable—solid line), the mean maximum sprint speed increases

over time, but the rate depends on the nature of the correlation

between traits. Intensity of selection (isprint) and the coefficient of

linear selection (�sprint) decrease over time and differ depending

on the nature of the trait’s correlation and strategy. Error bars

represent 95% confidence intervals.

Fig. 3 The change in variance between reproductive events for

sprint speed (individuals only use maximum sprint—dashed line;

sprint speed variable—solid line). Initially the variance decreases,

as directional selection on the first generation truncates the

distribution of phenotypes in a population, and this decrease is

greater (more negative) in the non-variable group. As populations

in either scenario respond to selection, and the mean for sprint

speed increases (Fig. 2), selection on high endurance and on the

costs of sprint speed further reduces variance. Covariation

structure did not significantly alter the trends within variable and

non-variable simulations.
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population has clear implications both for the form

and intensity of selection and for the efficiency of the

response to selection. Both intensity of selection

(isprint) and the linear coefficient of selection on

sprint speed (�sprint) over time follow a similar pat-

tern across the three different trait correlation con-

ditions, but both metrics overall decrease as the

correlation between sprint and endurance goes

Table 3 Best-fit model �sprint at each generation of each simulation

Model term Coefficient SE

B Intercept 0.25 0.01

Gen �4.5� 10�4 6.8� 10�5

Cov �0.13 0.012

Preferred �2.7� 10�4 1.4� 10�4

Gen:Cov 2.9� 10�4 7.6� 10�5

Gen:Preferred 2.5� 10�6 9.0� 10�7

Cov:Preferred 2.3� 10�4 1.7� 10�4

Gen:Cov:Preferred �2.1� 10�6 1.0� 10�6

Model term Coefficient SE

A Intercept 0.21 0.010 C Intercept 0.25 0.010

Gen �2.3� 10�4 6.0� 10�5 Gen �3.8� 10�4 5.9� 10�5

Cov �0.12 0.009 Cov �0.11 0.008

Preferred 6.7� 10�4 1.2� 10�4 Preferred �2.0� 10�4 1.3� 10�4

Gen:Cov 1.5� 10�4 2.6� 10�5 Gen:Cov 1.4� 10�4 2.6� 10�5

Gen:Preferred �2.2� 10�6 7.6� 10�7 Gen:Preferred 1.6� 10�6 7.7� 10�7

Cov:Preferred 1.5� 10�4 1.0� 10�4 Cov:Preferred �3.4� 10�5 1.0� 10�4

Notes: Best-fit models for (A) simulations with variable and nonvariable sprint speed included together and (B) variable sprint speed only, as well

as (C) the same model predictors as (A) but using the dataset for (B).

Table 2 Best-fit model for intensity of selection on sprint speed (isprint) including terms for generation (Gen), covariation between

sprint and endurance (Cov) and preferred speed (Preferred)

Model term Coefficient SE Model term Coefficient SE

A Intercept 0.15 0.009 B Intercept 0.18 0.007

Gen �1.1� 10�4 4.8� 10�5 Gen �1.9� 10�4 4.3� 10�5

Cov �0.12 0.004 Cov �0.11 0.004

Preferred 9.0� 10�4 1.1� 10�4 Preferred �1.0� 10�4 1.0� 10�4

Gen:Cov 8.3� 10�5 2.1� 10�5 Gen:Cov 6.2� 10�5 2.0� 10�5

Gen:Preferred �1.7� 10�6 6.1� 10�7 Gen:Preferred 9.8� 10�7 5.7� 10�7

Notes: (A) Simulations with variable and nonvariable sprint speed included together, and (B) variable sprint speed only. Notice the sign of the

coefficients for terms and interactions involving preferred speed changes between models.

Table 4 Best-fit model for the change in variance during each interval between reproductive events for (A) simulations with variable

and nonvariable sprint speed included together and (B) variable sprint speed only

Model term Coefficient SE Model term Coefficient SE

A Intercept �0.44 0.03 B Intercept �0.47 0.01

Gen �1.4� 10�4 4.5� 10�5 Gen �2.5� 10�4 5.0� 10�5

Preferred �1.5� 10�3 3.1� 10�4 Cov �0.019 0.01

Notes: When all simulations are considered, (A) time (Gen) and the percent of maximal sprint capacity (Preferred) are significant, and the

magnitude of the decrease in variance becomes greater over time. However, when non-variable simulations are excluded (B), only terms for

time and the covariance between sprint and endurance (Cov) are retained, although the coefficient estimate for the covariance term is not large

compared with its standard error. Thus, within the variable sprint group there is little difference between simulations with differing preferred

speeds.
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from negative to positive. Furthermore, when these

traits are positively correlated, endurance capacity for

the population tracks sprint capacity. Because the

costs for endurance are much higher than for

sprint speed in our model, this suggests that endur-

ance capacity imposes indirect costs on high-speed

phenotypes, manifesting as stabilizing selection on

sprint speed. A positive relationship between sprint

speed and endurance therefore causes the relation-

ship between individual sprint speed and fitness to

eventually become negative at higher speeds (Fig. 2).

Also, as the population’s mean sprint speed responds

to selection and increases over time, the variance is

continually reduced by selection, stemming from in-

direct costs of high endurance when there is a pos-

itive correlation between sprint and endurance, or

from the increasing energetic costs of extremely

high sprint speeds when the correlation with endur-

ance is negative or zero.

The change in sign for term coefficients involving

preferred speed from our entire dataset (Table 2, A)

to just those simulations in which individuals had

variable sprint speeds (Table 2, B) indicates that

populations that never vary performance experience

the same selective pressures in fundamentally differ-

ent ways from those that do vary their performance.

Surprisingly, selection is not greatly affected as pre-

ferred speed decreases relative to maximal capacity;

populations that used preferred speeds always expe-

rienced less intense selection than did those that used

maximal speeds, but selection intensities were less

influenced by the ‘‘level’’ of preferred performance.

Thus, the magnitude of the difference between max-

imum and preferred speed does not seem to alter the

population’s phenotypic trajectory. What we may

conclude from this is that perhaps specific preferred

speeds are not optimal speeds, and what is optimal is

the fact that there is variation in speed at all. Thus,

populations in our simulations could ameliorate the

influence of selection on sprint speed simply by not

moving at maximal speeds all the time. The form of

selection, as estimated by our best-fit selection

models, met our expectations for simulation runs

in which individuals only operated at their maximal

sprint speeds, in that the selection we imposed via

predators favored higher sprint capacities, and high

costs for high endurance (exponential cost function)

favored intermediate endurance capacities.

The behavior of our simulation when individuals

varied sprint speed may stem from multiple sources.

While varying performance introduces stochasticity

to predator/prey interactions, it may also serve to

artificially increase the cut-off for predator selection

away from the mean phenotype, which would lead to

erroneous quadratic estimates (Schluter 1988). Thus,

estimating selection without accounting for intra-

individual variation in performance is likely to be

misleading. Furthermore, the indirect constraints on

the phenotypic response to selection imposed by the

costs of endurance clearly demonstrate the necessity

of multivariate selection analyses. The observed var-

iation in results for selection metrics involving sprint

speed alone (Tables 2 and 3; Fig. 2) was explained by

differences in correlation with endurance and with

the performance strategy. Therefore, such estimates

of the effects of selection on mean phenotypes of one

trait are hardly informative out of context, when

other relevant fitness predictors are not measured

(Mitchell-Olds and Shaw 1987).

As per our first hypothesis, intra-individual varia-

tion in movement speeds therefore does indeed

appear to ‘‘buffer’’ a population from selection. If

we consider the differences in responses between

populations that always employed maximal sprint

speed versus those that did not, the former experi-

enced more intense selection, and an immediate pos-

itive shift in the phenotypic distribution for sprint

capacity (Fig. 2), as well as a more dramatic decrease

in the variance (Fig. 3). While this efficiency in re-

sponse to a novel threat is beneficial in the short

term, such a response would rapidly erode the avail-

able genetic variation, constraining the potential for

adaption in the long-term (Hoffman 2013). In our

simulations the selective pressures were essentially

static for the entirety of each run. However, selective

pressures experienced by natural populations may

fluctuate (Sinervo and DeNardo 1996; Siepielski

et al. 2009), which could favor lineages employing

a conservative bet-hedging strategy that maintains a

low variance in fitness in the long term rather than a

less conservative strategy in which fitness is maxi-

mized in the short term (Simons 2002). Thus, main-

taining phenotypic variation in the face of strong

selection may be an optimal strategy if selective pres-

sures are ephemeral or fluctuate over time or if adap-

tive trends reverse (e.g., Losos et al. 2006).

Our second hypothesis states that the selective en-

vironment as well as the genetic underpinnings and

correlations between performance traits determine

and maintain maximal and optimal values of perfor-

mance. Indeed, in our model the strength of selec-

tion and the resultant response to selection were

modulated by the severity of environmental pressures

in the form of predator and resource densities as well

as the amount of energy a resource contains. We also

found clear evidence that the genetic correlation be-

tween sprint and endurance had a measurable effect

on the trajectory of populations in phenotypic space
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over time (Fig. 2). A negative correlation with en-

durance facilitated a rapid, positive shift in maximal

sprint capacity, while a positive correlation with en-

durance constrained this response.

Although the effects seen here are specific to the

context of our particular energetic paradigm, these

findings nonetheless clearly demonstrate the utility of

individual-based simulation approaches to perfor-

mance evolution. In building our model, we made

a number of simplifying assumptions, as do all mod-

elers, and while our relatively simplistic model fo-

cused on only two correlated traits, we were

nonetheless able to observe emergent variation in

the form and intensity of selection given only one

or two changes in parameters. Increasing the com-

plexity of our model will add further biological real-

ism and allow testing of more detailed hypotheses

related to the evolution of whole-organism perfor-

mance. For example, by allowing other organismal

features such as the size of the energy budget to

respond to selection (via assigning a mode of heri-

tability as we have with performance traits), the

model could be used to predict evolutionary re-

sponses in cases in which species adjust energy ac-

quisition rather than ‘‘choose sides’’ in an energetic

trade-off (Roff and Fairbairn 2012). Furthermore, for

more realistic long-term data, the model can be ad-

justed to include dynamic predator–prey interactions

(e.g., Brodie and Ridenhour 2003). We chose to

measure only a maximum of 15 generations for

each simulation as we would expect a real population

to experience a change in environmental and genetic

conditions over that span (Roff and Fairbairn 2012).

To focus on variation in selection in the short-term

response to only intra-individual variation in sprint

speed and its genetic correlation with endurance, we

chose to disregard co-evolution in our initial model,

nor do we consider evolved changes in the genetic

correlations between traits or in performance-use

strategy. However, incorporating the evolution of

these parameters is feasible and interpretable within

the simulation framework presented here.

While collecting real-world performance data is

still limited by logistic constraints, there has been a

positive trend toward measuring multiple traits (see

Lailvaux and Husak 2014). This inclusive approach is

necessary to avoid the pitfalls of taking things out of

the integrated organismal context, such as making

inferences about selection on one trait while ignoring

relevant, covarying traits also under selection

(Mitchell-Olds and Shaw 1987; Ghalambor et al.

2004; Hall et al. 2010; Lailvaux and Husak 2014).

Organismal data always constitute a snapshot of

the present, yet are representative not only of current

conditions, but of a complex selective and evolution-

ary past. Individual-based simulations allow us to

preserve this complexity and create what are essen-

tially a vast number of artificial selection lines for

which we can acquire complete, longitudinal data

on fitness and phenotype in the context of known

environmental parameters. Beyond quantifying cur-

rent trait distributions in study populations, we have

shown that considering such data in the context of a

complex, explicitly modeled system is both feasible

and capable of alerting investigators to many varied

explanations bridging ecological processes and the

evolutionary dynamics of performance.

In conclusion, individual-based simulations repre-

sent a promising approach to understanding the or-

igins and maintenance of whole-organism

performance capacities, as well as for testing hypoth-

eses regarding their evolutionary trajectories. Using a

relatively simple model, we have shown that intra-

individual variation in realized performance results

in less intense selection on performance regardless

of the extent of variation, and furthermore that the

evolutionary trajectories of multiple performance

traits dependent on a common pool of resources

are affected by the nature of the bivariate correlation

between them. Future iterations of this model will be

able to test further scenarios of the evolution of per-

formance under a variety of ecologically relevant

conditions.
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